Производство чугуна и стали
Металлы и сплавы по химическому составу делятся на цветные (медь, алюминий, свинец, бронза, латунь и др.) и черные (железо, сталь, чугун). В чистом виде металлы используются редко, а в основном — в виде сплавов.
Чугун и сталь это сплавы железа с углеродом, в которых неизбежно наличие примесей других химических элементов:
Сталь: Fe + С (< 2%) + примеси (относительно немного);
Чугун: Fe + С (> 2%) + примеси (больше, чем у стали).
Что общего и в чем различия (табл. 1.3) между этими сплавами?
Основа одна — железо. Главное отличие заключается в том, что чугун имеет повышенное содержание углерода (свыше 2% в чугунах и до 2% в сталях) Граница между этими сплавами проходит по содержанию углерода в сплаве. Так же больше во многих чугунах марганца, серы, фосфора и кремния.
Стали чаще всего более твердые, прочные и износостойкие. Чугуны же более хрупкие, но обладают хорошими литейными свойствами. Сталь является производной от чугуна., т.к. производство её в основном двух стадийное: из железных руд сначала получают чугун, далее из чугуна и стального лома получают сталь.
Таблица 1.3 Сравнительные показатели чугунов и сталей.
№ |
Наименование показателей |
Чугун |
Сталь |
1 |
Содержание углерода, % |
> 2% |
< 2% |
2 |
Содержание S, P, Mn, Si |
Много * |
меньше |
3 |
Структура |
ледобурит,…. |
аустенит,феррит,… |
4 |
Хрупкость |
более хрупкий * |
|
5 |
Твердость |
|
более твердая * |
6 |
Прочность |
|
выше * |
7 |
Ковкость |
|
выше * |
8 |
Литейные свойства |
выше |
|
9 |
Изготовляемые детали |
станины, корпуса, |
валы, шестерни,… |
10 |
Технология изготовления |
литье и механ. обраб. |
прокатка и мех. обр. |
* — чаще всего.
Железо в руде находится в виде окислов, оксидов, карбонатов и прочих химических соединений. Кроме того, в руде много (до 30… 60%) пустой породы: кварцит (песок), глинистые вещества и др.
Основные железные руды:
1. Магнитный железняк Fe O — оксид (до 65% железа). (Соколовское и Сарбайское месторождения, Курская магнитная аномалия)
2. Красный железняк Fe O — оксид (до 60% железа). ( Криворожское месторождение, Курская магнитная аномалия)
3. Бурый железняк n Fe O х mH 2 O — карбонат (до 55% железа). (Лисаковское месторждение)
4. Шпатовый железняк Fe C O 3 — углекислая соль (до 40% железа). ( Криворожское месторождение)
Почти половина разведанных мировых запасов железа находится на территории государств СНГ. Добывалось и производилось чугуна и стали в бывшем СССР больше всех в мире. Причинами этого «достижения» были: несовершенство конструкций и низкая надежность машин и оборудования; низкое качество выплавляемых чугунов и сталей; огромные территории; большая протяженность дорог и коммуникаций; низкая эффективность сельскохозяйственного производства, строительных и дорожных работ. Всё это требовало намного больше металла, чем в других странах. И кроме того, зарытого металла в земле на стройках, брошенного на свалках, в лесах, болотах и на полях было больше всех в мире.
В историческом плане производство черных металлов развивалось по следующим этапам:
1. Сыродутный процесс (1500 лет до н. э.). Производительность процесса очень низкая, получали за 1 час всего до 0,5… 0,6 кг железа. В кузнечных горнах железо восстанавливалось из руды углём при продувке воздухом (рис. 1.19) с помощью кузнечных мехов.
Сначала при горении древесного угля образовывалась окись углерода
C + O2 Ù C O,
которая и восстанавливала чистое железо из руды
C O + Fe Ù Fe + C O2.
В результате длительной продувки воздухом из кусочков руды получались практически без примесей кусочки чистого железа, которые сваривались между собой кузнечным способом в полосу, которые далее использовались для производства необходимых человеку изделий. Это технически чистое железо содержало очень мало углерода и мало примесей (чистый древесный уголь и хорошая руда), поэтому оно хорошо ковалось и сваривалось и практически не корродировало. Процесс шел при относительно невысокой температуре (до 1100…1350 °С),металл не плавился, т. е. восстановление металла шло в твердой фазе. В результате получалось ковкое (кричное) железо. Просуществовал этот способ до XIV века, а в несколько усовершенствованном виде до начала XX века, но был постепенно вытеснен кричным переделом.
Отсюда следует, что исторически самым первым сварщиком металлов был кузнец, а самый первый способ сварки- это кузнечная сварка.
2. С увеличением размеров сыродутных горнов и интенсификацией процесса возрастало содержание углерода в железе, температура плавления этого сплава (чугуна) оказывалась ниже, чем у более чистого железа и получалась часть металла в виде расплавленного чугуна, который как отход производства вытекал из горна вместе со шлаком.
В XIV век в Европе был разработан двухступенчатый способ получения железа (маленькая домна, далее кричной процесс). Производительность увеличилась до 40 …50 кг/час железа. Использовалось водяное колесо для подачи воздуха. Кричный передел -это процесс рафинирования чугуна (снижение количества C, Si, Mn) с целью получения из чугуна кричного (сварочного) железа.
3.В конце XVIII века в Европе начали использовать минеральное топливо в доменном процессе и в пудлинговом процессе. При пудлинговом процессе каменный уголь сгорает в топке, газ проходит через ванну, расплавляет и очищает металл. В Китае даже раньше, в X-ом веке, выплавляли чугун, а далее получали сталь процессом пудлингования. Пудлингование- это очистка чугуна в пламенной печи.
При очистке железные зерна собираются в комья. Пудлиновщик ломом много раз переворачивает массу и делит ее на 3…5 частей –криц. В кузнице или прокатной машине свариваются зерна и получают полосы и другие заготовки. Используются уже паровые машины вместо водяного колеса. Производительность возрастает до 140 кг сварочного железа в час.
4.В конце XIX века — почти одновременно внедряются три новых процесса получения стали: бессемеровский, мартеновский и томасовский. Производительность плавки стали возрастает резко (до 6 тн/час).
В середине XX века: внедряются кислородное дутье, автоматизация процесса и непрерывная разливка стали.
При сыродутном, кричном и пудлинговом процессах железо не плавилось (технический уровень того времени не давал возможность обеспечить температуру его плавления). Продувка кислородом расплавленного металла в бессемеровском конверторе из -за резкого увеличения поверхности соприкосновения металла с окислителем (кислородом) в тысячу раз ускоряет химические реакции по сравнению с пудлинговой печью.
В сыродутном и кричном процессах получали одностадийным методом ковкое, сварочное железо (малоуглеродистую сталь), причём имеющее небольшое количество примесей, поэтому весьма стойкое к коррозии. Сейчас в стадии развития находится одностадийный процесс производства стали: обогащение руд (получение окатышей, содержащих 90… 95% железа) и выплавка стали в электропечи.
Современное производство чугуна и сталей выполняется по следующей схеме (рис. 1.20).
Производство чугуна
Чугун выплавляется в домнах. Это сложное инженерное сооружение, работающее непрерывно в течение 5..10 лет.
Печь работает по принципу противотока. Сверху загружается руда, флюсы и кокс, а снизу подается воздух.. Кокс служит для нагревания и расплавления руды, а также участвует в восстановлении железа из окислов руды. В коксе должно быть минимум серы и фосфора. Флюсы (известняки, кремнеземы.) необходимы для получения шлаков При сгорании топлива образуется окись углерода, которая и является главным восстановителем железа. Восстановление железа происходит от высших окислов к низшим и, в конечном итоге, к металлу:
Fe2 O3 ® Fe3 O4 ® Fe O ® Fe
окисью углерода СО и твердым углеродом С. Восстановление марганца, кремния и других элементов выполняется также коксом.
Продуктами доменного производства являются:
чугун передельный, содержащий 4…4,5% С, 0,6…0,8 % Si, 0,25…1,0% Mn, до 0,3 % S и до 0,05% Р;
чугун литейный, содержащий Si около 3% ;
ферросплавы: ферросилиций (9 …13% Si) и ферромарганец (70 …75 % Mn), предназначенные для раскисления и легирования сталей;
шлаки, используемые для производства шлаковаты, шлакоблоков, цемента.
Производство стали.
Чтобы получить сталь из чугуна надо уменьшить в нем количество углерода, марганца, серы и фосфора. Сталь получают в кислородных конверторах, мартеновских печах и электропечах.
Конвертор (рис. 1.21) —это сосуд грушевидной формы, футированный внутри огнеупорным кирпичом и подвешенный на двух кронштейнах.
Жидкий чугун (1250…1400 °С), полученный в домне, с помощью ковша заливают в конвертор, Для получения шлака добавляют в конвертор железную руду и известь, боксит и плавиковый шпат. В конвертор снизу подается воздух, или сверху –кислород. Процесс получения стали проходит быстро, при этом отчетливо видны три периода (рис. 1.22).
В первые 4 …5 минут процесса окисляется железо
Fe + O2 ® FeO.
Далее, образовавшаяся окись железа окисляет кремний и марганец:
Si + FeO ® SiO2 + Fe,
Mn+ FeO ® MnO2 + Fe.
Кремний и марганец окисляются также и кислородом:
Si + O2 ® SiO2,
Mn + O2 ® MnO2.
При окислении углерода, кремния, марганца и др. примесей выделяется большое количество тепла, температура расплава увеличивается, а окислы образуют шлак.
После того, как выгорят почти полностью Si и Mn наступает второй период бурного выгорания углерода
C + FeO ® Fe + CO,
характерный тем, что пока окись углерода. горит
CO + O2 ® CO2
над горловиной. будет яркое пламя.
Третий период наступает, когда над горловиной появляется бурый дым- признак того, что начало окисляться железо и процесс получения стали завершен.
Кислород вдувается в конвертор сверху (давление до 1,2 МПа) на зеркало жидкого металла. Температура при продувке кислородом выше, чем при продувке воздухом, поэтому кроме расплавленного чугуна можно использовать до 30% железного скрапа и железной руды. При продувке кислородом в сплаве уменьшается содержание азота, время продувки сокращается по сравнению с продувкой воздухом в 2 раза и увеличивается производительность конвертора.
Мартеновское производство менее производительное, чем конверторное., но лучше регулируется процесс, используются чугунные чушки и металлолом. Мартен это регенеративная пламенная печь. Газ сгорает над плавильным пространством, где создается температура 1750… 1800 °С. Газ и воздух предварительно подогреваются (до 1200…1250 °С) в регенераторах. За счет тепла сгоревших газов, выходящих в трубу. Два регенератора: один работает, а другой накапливает тепловую энергию. Для интенсификации процесса ванну продувают кислородом. Раскисление ванны проводят ферросилицием и феромарганцем в ванне, а окончательное –алюминием и ферросилицием в сталеразливочном ковше.
Сталь высокого качества выплавляют в дуговых и индукционных электропечах. Процесс примерно такой же как и в мартеновской печи, но температура выше, поэтому можно получать в электропечах тугоплавкую сталь, содержащую хром, вольфрам и др. Два периода при выплавке электростали: окислительный (выгорают Si, Mn, C, Fe) за счет кислорода, воздуха и оксидов шихты; восстановительный — раскисление стали, удаление серы. Для этого вводят флюс, состоящий из извести и плавикового шпата.
Индукционная плавка применяется обычно для переплавки сталей и получения высоколегированных и специальных сталей в условиях вакуума или специальной регулируемой атмосферы.